
Comparison of query execution time between Streaming Database and
Relational Database Management System

Pavol Podstreleny and Morales Diego

Computer Science and Information Engineering Department,

National Taiwan University of Science and Technology, Taiwan
M10715804@mail.ntust.edu.tw and​ ​E10715004@mail.ntust.edu.tw

Abstract-- Nowadays most systems focus its efforts in store
high volumes of data in different schemas: databases, file
systems or other forms of massive storage. On the other hand
there are many situations in the world where real-time
analysis needs to be done. For this situations, Data Stream
Management Systems, which prioritize data processing and
computation over data storage, can be used. In this paper we
analyze query execution time of Data Stream Management
System and Relational Database System, especially we
compared query execution time between PostgreSQL view,
materialized view and PipelineDB continuous view in the
specific use-case. Results showed that in our selected
use-case the continuous view performed better than
PostgreSQL view. Both materialized and continuous views
had a relatively small and constant cost of query.
Materialized refresh time problem was showed and discussed
in result section too.

Keywords-- PipelineDB, PostgreSQL, Data Stream
Management Systems, Streaming Databases

I. INTRODUCTION
Data volumes are growing rapidly, and this implies a huge
challenge for all the businesses. [1] The world gathers a lot of
use cases where high volumes of data are collected and used.
All of them share the principle of “​process data and extract
actionable insights from it​”.[2]
Some of the process may take quite a lot of time to generate
the corresponding output. In some use cases is much useful to
know the results faster. Stream Processing is a computer
programming paradigm, equivalent to data-flow programming
event stream processing and reactive programming allows
some applications to more easily exploit the data. From
analyzing large volumes of data than was previously possible,
to analyzing data in motion, whether the industry of concern is
telecommunications, health-care or utilities, technologies for
big data are needed.
The input to it must be processed in such a way that the quality
data yields quality effective results. [2] Quality of Big Data
has become an important factor to ensure that the quality of
data is maintained at all Big data processing phases. [3]
Over past year more new technologies have been introduced to
cope with the data-in-motion management. During past few
years growing trend of companies interested in SQL streaming
database systems could be observed. In this project report we
focus on comparison between SQL streaming database system

and relational database system, especially we compare
PostgreSQL and PipelineDB systems that was created by same
company. Real-time analysis use-case were created where
query execution time of different views was measured. This
use case should provide illustration for company which data
are rapidly growing and real-time analysis is needed.
The main objectives of this project report is to benchmark the
performance and characteristics of PipelineDB with
PostgreSQL.

II. RELATED WORKS
Pre-processing data before performing any analytics is
primeval. However, several challenges have been experienced
at this essential phase of the big data value chain [4]. Data
quality is one of them and it need to be highly considered in
the context of big data. [1]
There are few experiments about the comparison between
these kind of database systems, however there are similar
experiments where they has tried to improve data quality.
There are two strategies (1) data-driven and (2)
process-driven. The data-driven strategy deals with the data as
it is, using techniques and activities as cleansing to improve its
quality. On the other hand, Process-driven attempts to identify
the origin sources of poor data quality and redesign the process
of the way data is created or recorded. [2]

III. METHODOLOGY
In order to analyse and compare the performance of
PipelineDB against PostgreSQL in some specific queries,
experimental use case was created. Detailed information about
implementation of use-case are described below in the
sub-section. Use-case chosen for experiments is focused on
real time analysis, more precisely, on “movie” company that
could potentially monitor popularity of different movie
directors in the real time.

3.1 Use-case implementation
In the text below, schemas of tables, stream [6], continuous
view [7], continuous transform [8], view and materialized
view, used throughout the experiment, are shown.

CREATE TABLE movie_director

(movie_id integer not null, name varchar(15)

not null, PRIMARY KEY(movie_id,name));

CREATE FOREIGN TABLE likes_stream

(movie_id integer, likes integer)

1

SERVER pipelinedb;

CREATE VIEW likes_ct WITH (action=transform)

AS SELECT t.name, l.likes FROM likes_stream l JOIN

movie_director t ON l.movie_id = t.movie_id;

CREATE VIEW likes_cview WITH (action=materialize)

AS SELECT name, sum(likes) as popularity FROM

output_of('likes_ct') GROUP BY name;

CREATE TABLE likes_table

(movie_id integer, likes integer);

CREATE MATERIALIZED VIEW likes_mview

AS SELECT name, sum(likes) as popularity

FROM likes_table l JOIN movie_director t ON

l.movie_id = t.movie_id GROUP BY name;

CREATE VIEW likes_view AS SELECT name, sum(likes)

AS popularity

FROM likes_table l JOIN movie_director t

ONl.movie_id = t.movie_id GROUP BY name;

In the PipelineDB scenario showed in Figure 1, incoming data
in the stream (​likes_stream ​) are read by continuous
transform (​likes_ct ​) that joins table (​movie_director ​) with
this stream. Output of this continuous transform represents
another streams of data that is used by continuous view
(​likes_cview ​).

Figure 1 .PipelineDB Use-case data flow diagram

On the other hand PostgreSQL can not work with streams,
continuous views and continuous transforms. Therefore
another table (​likes_table ​) with similar schema was created
to substitute (​likes_stream ​) stream. Moreover PostgreSQL's
materialized view (​likes_mview ​) and view (​likes_view ​)
were created in order to compare these type of views with
continuous view in the experiments. Data flow of PostgreSQL
is shown in the Figure 2.

Figure 2. PostgreSQL Use-case data flow diagram

Throughout the first experiment some randomly generated
data were added to stream/tables and afterwards “select query”
described below were executed. These steps were repeated
multiple times. Main objective was to measure and compare
difference in query execution time between PipelineDB
continuous view and PostgreSQL view, materialized view.

EXPLAIN ANALYZE SELECT * FROM likes_cview ORDER BY

popularity desc;

EXPLAIN ANALYZE SELECT * FROM likes_view ORDER BY

popularity desc;

EXPLAIN ANALYZE SELECT * FROM likes_miew ORDER BY

popularity desc;

In the second experiment, refresh time of materialized view
was analyzed as number of data in the table were increasing.

IV. RESULTS
The result of the first experiment is shown in the Figure 3.
Execution time of querying continuous view and materialized
view did not change as number of data in the stream/table
were increasing. On the other hand, increasing trend of query
execution time on view could be observed as data were added
into table. Querying the results in the continuous view was
similar to querying a materialized view in standard SQL, it is
fast and efficient.
The main difference with PipelineDB in this case was that
while the continuous views were updated on the fly and access
time is fast and constant, views need to be computed every
time they are asked. This add a computation cost that can be
noticed in the Figure 3.
One of the main differences between PipelineDB and
PostgreSQL is that PipelineDB does not store streaming data
in order to do analysis. On the other hand PostgreSQL
streaming data has to be kept in the table.

2

Figure 3. Measurement of execution time of PostgreSQL view,

materialized view and PipelineDB continuous view

Materialized views store the result and only refresh its content
in specific circumstances. It does not have capability of
updating itself after every insertion. In this situation trigger
could be created on likes_table to update materialized view
every time there is insertion. Problem with this approach is
that update of materialized view could be in progress when
another insertion into table could occur. In this situation
trigger could refresh the materialized view when a refresh is
already in the progress. Materialized View needs to be
refreshed before every view and the time that this refresh takes
is proportional to the size of the table as shown in the second
experiment in the Figure 4, since the refresh operation
completely replaces the contents of a materialized view.

Figure 4. Measurement of execution time of refresh in

PostgreSQL materialized view

V. CONCLUSION
In this project report streaming database system PipelineDB
and PostgreSQL relational databases system were analyzed.
The study focused on comparison of query execution time
between PostgreSQL view, materialized view and PipelineDB
continuous view. Thanks to PipelineDB that offers fast and
high throughput data analysis without storing the stream data
on any table and its internal view (continuous view), it can
update itself regularly. That is why, the results shows that in
our selected use-case the continuous view performed is better
than PostgreSQL view due to while the data increasing,
PostgreSQL view spends more time of execution. Both
materialized and continuous views had a relatively small and
constant cost of query. Disadvantages of using materialized
view in real time systems is refresh time. Results shows that
refresh time is increasing as number of data in the table
increases. With this results we are able to support our
demonstration of continuous view, materialized view and
view, to provide which is better for companies and systems
and keep their databases optimized and safe.

VI. REFERENCES
[1] Taleb Ikbal, Dssouli Rachida, “Big Data Pre-Processing: A
Quality Framework”, IEEE International Congress on Big
Data, pp. 191-198, 2015
[2] Gu Lin, Zeng Deze, Guo Song, Xiang Yong, Hu Jiankun,
“A General Communication Cost Optimization
Framework for Big Data Stream Processing
in Geo-Distributed Data Centers”, IEEE Transactions on
Computers, vol. 65, No. 1, pp. 19-29, 2016
[3] H. Hu, Y. Wen, T.-S. Chua, and X. Li, “Toward Scalable
Systems for Big Data Analytics: A Technology Tutorial,”
IEEE Access, vol. 2, pp. 652–687, 2014.
[4] Lee Yong-Ju, Lee Myungcheol, Lee Mi-Young, Hur Sung
Jin, Min Okgee, “Design of a Scalable Data Stream Channel
for Big Data Processing”, Big Data SW Platform Research
Department, pp. 537-540, 2015
[5] PipelineDB: Streams [online]. [cit. 2018-12-26] from:
http://docs.pipelinedb.com/streams.html
[6] PipelineDB: Continuous views [online]. [cit. 2018-12-26]
from: ​http://docs.pipelinedb.com/continuous-views.html
[7] PipelineDB: Continuous transforms [online].
[cit.2018-12-26] from:​http://docs.pipelinedb.com/streams.html

3

http://docs.pipelinedb.com/continuous-views.html
http://docs.pipelinedb.com/streams.html

